J. Chem. Research (S), 2001, 143–145

Spectrophotometric determination of cationic micellar binding constant of ionised phenyl salicylate in the presence of inert salts[†]

M. Niyaz Khan* and Emran Ismail

Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

A spectrophotometric technique has been used to determine the cetyltrimethylammonium bromide (CTABr) micellar binding constant (K_S) of ionised phenyl salicylate (PS⁻) in the presence of a constant amount of inert salt (MX = NaBr or C₆H₅COONa). The values of K_S at different [MX] follow an empirical relationship: $K_S = K_S^0/(1 + K_{X/S}[MX])$ where the magnitude of the empirical parameter $K_{X/S}$ is the measure of the ability of X⁻ to expel S⁻ (= PS⁻) from the CTABr micellar pseudophase to the aqueous pseudophase. The value of $K_{X/S}$ is nearly 13-fold larger for C₆H₅COO⁻ than for Br⁻.

Keywords: cationic micellar binding constant, ionised phenyl salicylate

The pseudophase ion-exchange (PIE) model was developed to explain the kinetic data for micellar-mediated reactions involving a single ion-exchange process.¹ The application of the PIE model has been extended to reactions involving two ion-exchange processes by imposing relatively more assumptions and restrictive conditions.² The effects of inert inorganic salts (MX) on pseudo-first-order rate constants for cationic micellar-mediated methanolysis,³ *n*-butylaminolysis⁴ and piperidinolysis⁴ of ionised phenyl salicylate (PS⁻) revealed that the values of $K_{\rm S}$, at different concentrations of MX, obeyed the following empirical equation

$$K_{\rm S} = K_{\rm S}^{0} / (1 + K_{\rm X/S} \,[{\rm MX}]) \tag{1}$$

where $K_{X/S}$ is an empirical parameter. The magnitude of $K_{X/S}$ is the measure of the ability of X⁻ to expel S⁻ from micellar pseudophase to the aqueous pseudophase. The validity of equation (1) has been supported by only kinetic data.³⁻⁶ The present study was initiated with the aim of providing non-kinetic data, obtained by spectrophotometric measurements, in the support of equation (1). The observed data and their possible explanation(s) are described in this manuscript.

Experimental

Details of spectrophotometric measurements have been described elsewhere. 7,8

Results and discussion

The initial absorbance values (A^0_{obs}) were measured at 360 and 370 nm (these are the wavelengths where maximum initial absorbance changes occurred due to increase in the total concentration of cetyltrimethylammonium bromide, $[CTABr]_T$, from 0 to 0.01 mol/dm³) within the $[CTABr]_T$ range 2×10^{-5} to 2×10^{-2} mol/dm³ at 35 °C. The CTABr micellar binding constant (K_S) of PS⁻ and A^0_M (= A^0_{obs} at [D_n] where $A^0_W \ll A^0_M K_S[D_n]$ and $1 \ll K_S[D_n]$) were calculated from equation (2) by the nonlinear least-squares technique. The subscripts W and M represent aqueous

$$A^{0}_{obs} = \frac{A^{0}_{W} + A^{0}_{M}K_{S}[D_{n}]}{1 + K_{S}[D_{n}]}$$
(2)

pseudophase and micellar pseudophase, respectively, and $[D_n]$ = [CTABr]T - cmc (where cmc is the critical micelle concentration). The values of A^0_W (= A^0_{obs} at $[D_n] = 0$) were either the values of A^0_{obs} at [CTABr]T = 2 × 10⁻⁵ mol/dm³ (when cmc > 2 × 10⁻⁵ mol/dm³) or the extrapolated values of A^0_{obs} at [CTABr]T = 0 (when cmc < 2 × 10⁻⁵ mol/dm³). The values of cmc of CTABr at a constant [MX] was determined as follows, The unknown parameters A_{M}^{0} and K_{S} as well as the least-squares, $\sum d_{i}^{2}$ (where $d_{i} = A_{obs i}^{0} - A_{calcd i}^{0}$ with $A_{obs i}^{0}$ and $A_{calcd i}^{0}$ representing observed and calculated initial absorbance at ith total concentration of CTABr) values were calculated from equation (2) at a given value of cmc using the non-linear least-squares technique. This calculation was repeated for different given values of cmc and the best value of the cmc considered was the one for which the $\sum d_i^2$ value was minimum. Such calculated values of cmc, A_{M}^{0} and K_{S} at different [NaBr] and [C₆H₅COONa] are summarised in Table 1. The quality of the fitting of observed data to equation (2) is evident from the standard deviations associated with the calculated parameters, A_{M}^{0} and K_{S} , and from a few typical plots of Fig. 1 where solid lines are drawn through the calculated values of absorbance using equation (2) with parameters A^0_{M} and K_{S} listed in Table 1. It may be noted that the calculated values of $A_{\rm M}^0$ are essentially similar to the correspond-ing values of $A_{\rm obs}^0$ at 0.02 mol/dm³ CTABr (Table 1).

The increase in [MX] (MX = NaBr and C₆H₅COONa) caused a nonlinear decrease in $K_{\rm S}$ (Table 1). These data show a good fit to equation (1). The nonlinear least squares calculated respective values of $K_{\rm S}^{0}$ and $K_{\rm X/S}$ are 6495 ± 227 dm³/mol and 11.4 ± 1.3 dm³/mol for X⁻ = Br⁻ and 6841 ± 432 dm³/mol and 145 ± 24 dm³/mol for X⁻ = C₆H₅COO⁻. The values of $K_{\rm S, calcd}$ (Table 1) and standard deviations associated with the calculated parameters, $K_{\rm S}^{0}$ and $K_{\rm X/S}$, reveal the quality of fit of KS – [MX] data to equation (1). The values of $K_{\rm S}^{0}$ are comparable with $K_{\rm S}$ (= 6710 dm³/mol obtained from kinetic data on hydrolysis of PS⁻⁹ and to $K_{\rm S}$ (= 6994 dm³/mol) obtained spectrophotometrically8 in the absence of MX.

The value of $K_{X/S}$ (= 145 dm³/mol) for C₆H₅COO⁻ may be compared with the $K_{X/S}$ values for C₆H₅COO⁻ (= 124 and 127 dm³/mol) obtained from kinetic data on *n*-butylaminolysis and piperidinolysis of PS⁻ in aqueous solvent containing 2 % v/v CH₃CN.^{5a} Similarly, the value of $K_{X/S}$ (= 11.4 dm³/mol) for Br⁻ may be compared with $K_{X/S}$ (= 19–23 dm³/mol obtained for KBr from kinetic data on methanolysis of PS⁻ in mixed aqueous solvent containing 2 % v/v CH₃CN and 10 % v/v CH₃OH³ and with $K_{X/S}$ (= 25–50 dm³/mol) obtained for NaBr

^{*} To receive any correspondence. E-mail: niyaz@kimia.um.edu.my

[†] This is a Short Paper, there is therefore no corresponding material in

J Chem. Research (M).

Table 1 Values of parameters, A_{M}^{0} and K_{s} , calculated from equation (2) by using A_{obs}^{0} values at 360 and 370 nm^a

	[MX] mol/dm ³	$A^0_W{}^b$	10 ⁵ cmc mol/dm ³	A ⁰ _M	$A^0_{M}^{c}$	<i>K</i> s dm³/mol	K _{s,calcd} d dm³/mol	No. of data points
NaBr	0.01	0.784	7.5	1.251 ± 0.008e	1.256	5398 ± 381e	5829	14
	0.02	(0.360)	(7.5)	(0.810 ± 0.008)	(0.811)	$(01/1 \pm 4/8)$	E006	14
	0.02	0.000	0.0	1.209 ± 0.012	(0.950)	4940 ± 490 (E206 ± E62)	5260	14
	0.02	(0.376)	(0.0)	(0.000 ± 0.012)	(0.650)	(3390 ± 303)	1007	14
	0.05	(0.279)	7.0	1.301 ± 0.009	(0.950)	4900 ± 301	4037	14
	0.04	(0.370)	(7.0)	(0.005 ± 0.009)	(0.000)	(3403 ± 432)	4457	14
	0.04	0.030	7.0 (6.5)	1.321 ± 0.010	1.322	400/±324	4437	14
	0.06	(0.304)	(0.5)	(0.070 ± 0.010)	(0.077)	(4402 ± 300) 2510 ± 226	2052	14
	0.00	0.032	7.5	1.323 ± 0.012	1.310	3310 ± 330	3003	14
	0.06	(0.390)	(7.0)	(0.090 ± 0.012)	(0.070)	(3020 ± 304)	2052	14
	0.00	0.011	5.0	1.299 ± 0.004	1.207	3009 ± 123	3003	14
	0.10	(0.377)	(5.0)	(0.004 ± 0.005) 1.271 + 0.006	(0.050)	(4292 ± 1/3)	2021	14
	0.10	0.790	5.0	1.271 ± 0.000	(0.929)	(2004 + 120)	3031	14
	0.20	(0.307)	(5.0)	(0.044 ± 0.000) 1.271 + 0.016	(0.020)	(3094 ± 139) 1051 + 101	1077	17
	0.20	0.032	(2.5)	1.371 ± 0.010	(0.012)	(2007 · 205)	1977	17
	0 50	(0.390)	(2.5)	(0.929 ± 0.010)	(0.912)	(2097 ± 205)	067	17
	0.50	0.032	0.0	1.430 ± 0.019	(1.400)	332 ± 01 (072 + 96)	907	17
		(0.390)	(0.0)	(1.027 ± 0.019)	(1.027)	$(9/3 \pm 00)$		
C ₆ H ₅ COONa	0.002	0.825	6.5	1.286 ± 0.013	1.260	5015 ± 591	5305	15
		(0.385)	(6.5)	(0.837 ± 0.014)	(0.817)	(5761 ± 781)		
	0.003	0.841	6.5	1.324 ± 0.011	1.310	4683 ± 445	4769	15
		(0.387)	(6.5)	(0.864 ± 0.011)	(0.848)	(5226 ± 517)		
	0.005	0.854	5.0	1.346 ± 0.012	1.321	3446 ± 310	3964	15
		(0.401)	(4.5)	(0.882 ± 0.013)	(0.850)	(3533 ± 355)		
	0.010	0.844	3.5	1.342 ± 0.008	1.32	62732 ± 153	2794	15
		(0.386)	(3.5)	(0.875 ± 0.008)	(0.858)	(2937 ± 169)		
	0.020	0.837	3.0	1.323 ± 0.011	1.300	1922 ± 136	1756	15
		(0.393)	(3.0)	(0.886 ± 0.011)	(0.864)	(1983 ± 144)		
	0.040	0.860	0.5	1.413 ± 0.011	1.405	1044 ± 59	1007	15
		(0.405)	(1.0)	(0.965 ± 0.009)	(0.946)	(1000 ± 45)		
	0.100	0.856	0.0	1.400 ± 0.018	1.388	641 ± 57	442	17
		(0.402)	(0.0)	(0.962 ± 0.016)	(0.946)	(703 ± 57)		

^a[phenyl salicylate]0 = 2 x 10-4 mol/dm³, [NaOH] = 0.01 mol/dm³, 35 °C, reaction mixture for each measurement contains 2 % v/v CH₃CN and parenthesised values were obtained from A^0_{obs} values at 370 nm. ^bObserved values of A^0_{obs} at $[D_n] = 0$. ^cObserved values of A^0_{obs} at [CTABr]T = 0.02 mol/dm³. ^dCalculated from equation (1) as described in the text. ^eError limits are standard deviations.

 $10^3 {CTABr}_1 / mol dm^3$

Fig. 1 Plots showing the dependence of initial absorbance (A_{obs}^0) upon the total concentration of cetyltrimethylammonium bromide ([CTABr]_T) for the micellar reaction mixtures containing 2 × 10⁻⁴ mol/dm phenyl salicylate, 0.01 mol/dm NaOH and 0.01 mol dm⁻³ NaBr at 360 nm (O) and 370 nm (Δ). Solid lines are drawn through the least squares calculated data points using equation (2) and parameters listed in Table 1.

from kinetic data on piperidinolysis and *n*-butylaminolysis of PS⁻ in aqueous solvent containing 2 % v/v CH₃CN.⁴

The empirical definition of $K_{X/S}$ shows that the magnitude of $K_{X/S}$ should be proportional to ion-exchange constant (K_X^S = {[X_M][S_W]/[X_W][S_M]}). The value of $K_{C6H5COO/Br} =$ $K_{C6H5COO/S}/K_{Br/S}$ (= 145/11.4 = 12.7) is not very different from ¹H NMR spectrometrically determined values of K_X^{Br} for X = salicylate monoanion ($K_X^{Br} = 20$), *o*-nitrobenzoate ($K_X^{Br} =$ 3.8), *m*-nitrobenzoate ($K_X^{Br} = 11$) and *p*-nitrobenzoate ($K_X^{Br} =$ 3.3) in the presence of tetradecyltrimethylammonium bromide micelles.¹⁰ Similarly, the reported value of K_{26CIBz}^{Cl} (= 16.8)¹¹, where 26CIBz represents 2,6-dichlorobenzoate, is equivalent to $K_{26CIBz}^{Br} = 5.6-8.4$ (because $K_{Br}^{Cl} = 2-3$).¹¹ Thus, the value of K_{26CIBz}^{Br} (^a 7) may not be considered to be significantly different from $K_{C6H5COO/Br}$ (= 12.7) within the domain of the uncertainties in the values of $K_{26CIBz}^{Br 11}$ and $K_{C6H5COO/Br}$ caused by various factors.¹¹

Normal ionic micellar affinity of an ion is largely governed by electrostatic and hydrophobic interactions as well as steric hindrance or packing constraints. The nearly 13-fold larger value of $K_{C6H5COO/S}$ than that of $K_{Br/S}$ is due to larger hydrophobicity of $C_6H_5COO^{-}$ compared to that of Br. It may be noted that probably both $K_{X/S}$ and K_S^{-0} may not be completely independent of the size and shape of the micelle. It is known that both in the presence and absence of a solubilisate, the increase in the concentration of micelle-forming ionic surfactants changes the size and shape of the micelle.^{11,12} Thus, a strict variation of K_S with [MX] may not be expected to follow equation (1) in a wide range of [MX]. This statement is supported by a recent report¹¹ on effect of counterion competition on cationic micellar growth horizons where the selectivity coefficient *i.e.* ion-exchange constant for two counterions, 2,6-dichlorobenzoate and chloride ions, turned out to be 13 ± 3 and 22 ± 5 at 0.010 and 0.030 M CTA⁺ micellar surface (CTA⁺ = cetyltrimethylammonium ion), respectively. This study¹¹ also revealed the fact that the values of ion-exchange constants are technique-dependent. Magid and coworkers¹¹ have suggested that there is a continuum of adsorption sites, with a considerable distribution of aromatic counterions about an average depth of penetration. This supports the idea of multi-state model of micelle.¹³

The authors thank the National Scientific Research and Development Council of Malaysia under IRPA program for financial support (Grant No, 09-02-03-0785).

Received 10 December 2000; accepted 8 February 2001 Paper 00/667

References

(a) L.S. Romsted, in *Micellization, Solubilization and Microemulsions*; K. L. Mittal, Ed., Plenum: New York, 1977; Vol. 2, p 509; (b) L. S. Romsted, in *Surfactants in Solutions*; K. L. Mittal and B. Lindman, Eds., Plenum: New York, 1984; Vol. 2, p 1015.

- 2 (a) L.S. Romsted, J. Phys. Chem., 1985, 89, 5107, 5113; (b) A.G. Oliveira, I. M. Cuccovia and H. Chaimovich, J. Pharm. Sci., 1990, 79, 37.
- 3 M.N. Khan, J. Org. Chem., 1997, 62, 3190.
- 4 M.N. Khan, Z. Arifin, E. Ismail and S.F.M. Ali, J. Org. Chem., 2000, 65, 1331.
- 5 (a) M.N. Khan, Z. Arifin, E. Ismail and S.F.M. Ali, *Colloids Surfaces A*, 2000, **161**, 381; (b) M.N. Khan and F. Ahmad, *Colloids Surfaces A*, in press.
- 6 M.N. Khan and Z. Arifin, J. Chem. Soc. Perkin Trans 2, 2000, 2503.
- 7 M.N. Khan, J. Chem. Soc. Perkin Trans 2, 1990, 445.
- 8 M.N. Khan, Z. Arifin, A.W. Ibtisam, S.F.M. Ali and E. Ismail, *Colloids Surfaces A*, 2000, 163, 271.
- 9 M.N. Khan and Z. Arifin, J. Colloid Interface Sci., 1996, 180, 9.
- 10 S.J. Bachofer and U. Simonis, *Langmuir*, 1996, **12**, 1744.
- 11 L.J. Magid, Z. Han, G.G. Warr, M.A. Cassidy, P.D. Butler and W.A. Hamilton, J. Phys. Chem. B, 1997, 101, 7919.
- 12 (a) A. Heindl, J. Strand and H.-H. Kohler, J. Phys. Chem., 1993, 97, 742; (b) U. Olsson, O. Soderman and P. Guering, J. Phys. Chem., 1986, 90, 5223; (c) T. M. Clausen, P. K. Vinson, J.R. Minter, H.T. Davis, Y. Talmon and W.G. Miller, J. Phys. Chem., 1992, 96, 476 and references cited therein; (d) P.M. Lindemuth and G.L. Bertrand, J. Phys. Chem., 1993, 97, 7769; (e) B.K. Mishra, S.D. Samant, P. Pradhan, S.B. Mishra and C. Manohar, Langmuir, 1993, 9, 894; (f) P.K. Prud'homme and G.G. Warr, Langmuir, 1994, 10, 3419; (g) K. Bijma, M.J. Blandamer and J.B.F.N. Engberts, Langmuir, 1998, 14, 79.
- 13 (a) P. Mukerjee, in *Solution Chemistry of Surfactants*; K.L. Mittal, Ed.: Plenum Press, New York, 1979, Vol. 1, p. 153; (b) D. M. Davies, N.D. Gillitt and P.M. Paradis, *J. Chem. Soc. Perkin Trans*, 2, 1996,659.